\(\int \frac {\sec (e+f x)}{\sqrt {4-5 \sec (e+f x)} \sqrt {2+3 \sec (e+f x)}} \, dx\) [268]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 125 \[ \int \frac {\sec (e+f x)}{\sqrt {4-5 \sec (e+f x)} \sqrt {2+3 \sec (e+f x)}} \, dx=\frac {2 i \cot (e+f x) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {5} \sqrt {4-5 \sec (e+f x)}}{\sqrt {2+3 \sec (e+f x)}}\right ),\frac {1}{45}\right ) \sqrt {\frac {1-\sec (e+f x)}{2+3 \sec (e+f x)}} \sqrt {\frac {1+\sec (e+f x)}{2+3 \sec (e+f x)}} (2+3 \sec (e+f x))}{3 \sqrt {5} f} \]

[Out]

2/15*I*cot(f*x+e)*EllipticF(I*5^(1/2)*(4-5*sec(f*x+e))^(1/2)/(2+3*sec(f*x+e))^(1/2),1/15*5^(1/2))*(2+3*sec(f*x
+e))*((1-sec(f*x+e))/(2+3*sec(f*x+e)))^(1/2)*((1+sec(f*x+e))/(2+3*sec(f*x+e)))^(1/2)/f*5^(1/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {4069} \[ \int \frac {\sec (e+f x)}{\sqrt {4-5 \sec (e+f x)} \sqrt {2+3 \sec (e+f x)}} \, dx=\frac {2 i \cot (e+f x) \sqrt {\frac {1-\sec (e+f x)}{3 \sec (e+f x)+2}} \sqrt {\frac {\sec (e+f x)+1}{3 \sec (e+f x)+2}} (3 \sec (e+f x)+2) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {5} \sqrt {4-5 \sec (e+f x)}}{\sqrt {3 \sec (e+f x)+2}}\right ),\frac {1}{45}\right )}{3 \sqrt {5} f} \]

[In]

Int[Sec[e + f*x]/(Sqrt[4 - 5*Sec[e + f*x]]*Sqrt[2 + 3*Sec[e + f*x]]),x]

[Out]

(((2*I)/3)*Cot[e + f*x]*EllipticF[I*ArcSinh[(Sqrt[5]*Sqrt[4 - 5*Sec[e + f*x]])/Sqrt[2 + 3*Sec[e + f*x]]], 1/45
]*Sqrt[(1 - Sec[e + f*x])/(2 + 3*Sec[e + f*x])]*Sqrt[(1 + Sec[e + f*x])/(2 + 3*Sec[e + f*x])]*(2 + 3*Sec[e + f
*x]))/(Sqrt[5]*f)

Rule 4069

Int[csc[(e_.) + (f_.)*(x_)]/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (
c_)]), x_Symbol] :> Simp[-2*((c + d*Csc[e + f*x])/(f*(b*c - a*d)*Rt[(c + d)/(a + b), 2]*Cot[e + f*x]))*Sqrt[(b
*c - a*d)*((1 - Csc[e + f*x])/((a + b)*(c + d*Csc[e + f*x])))]*Sqrt[(-(b*c - a*d))*((1 + Csc[e + f*x])/((a - b
)*(c + d*Csc[e + f*x])))]*EllipticF[ArcSin[Rt[(c + d)/(a + b), 2]*(Sqrt[a + b*Csc[e + f*x]]/Sqrt[c + d*Csc[e +
 f*x]])], (a + b)*((c - d)/((a - b)*(c + d)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {2 i \cot (e+f x) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {5} \sqrt {4-5 \sec (e+f x)}}{\sqrt {2+3 \sec (e+f x)}}\right ),\frac {1}{45}\right ) \sqrt {\frac {1-\sec (e+f x)}{2+3 \sec (e+f x)}} \sqrt {\frac {1+\sec (e+f x)}{2+3 \sec (e+f x)}} (2+3 \sec (e+f x))}{3 \sqrt {5} f} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.65 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.41 \[ \int \frac {\sec (e+f x)}{\sqrt {4-5 \sec (e+f x)} \sqrt {2+3 \sec (e+f x)}} \, dx=-\frac {4 \sqrt {-\cot ^2\left (\frac {1}{2} (e+f x)\right )} \sqrt {-\left ((3+2 \cos (e+f x)) \csc ^2\left (\frac {1}{2} (e+f x)\right )\right )} \sqrt {-\left ((-5+4 \cos (e+f x)) \csc ^2\left (\frac {1}{2} (e+f x)\right )\right )} \csc (e+f x) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {5}{22}} \sqrt {\frac {-5+4 \cos (e+f x)}{-1+\cos (e+f x)}}\right ),\frac {44}{45}\right ) \sec (e+f x) \sin ^4\left (\frac {1}{2} (e+f x)\right )}{3 \sqrt {5} f \sqrt {4-5 \sec (e+f x)} \sqrt {2+3 \sec (e+f x)}} \]

[In]

Integrate[Sec[e + f*x]/(Sqrt[4 - 5*Sec[e + f*x]]*Sqrt[2 + 3*Sec[e + f*x]]),x]

[Out]

(-4*Sqrt[-Cot[(e + f*x)/2]^2]*Sqrt[-((3 + 2*Cos[e + f*x])*Csc[(e + f*x)/2]^2)]*Sqrt[-((-5 + 4*Cos[e + f*x])*Cs
c[(e + f*x)/2]^2)]*Csc[e + f*x]*EllipticF[ArcSin[Sqrt[5/22]*Sqrt[(-5 + 4*Cos[e + f*x])/(-1 + Cos[e + f*x])]],
44/45]*Sec[e + f*x]*Sin[(e + f*x)/2]^4)/(3*Sqrt[5]*f*Sqrt[4 - 5*Sec[e + f*x]]*Sqrt[2 + 3*Sec[e + f*x]])

Maple [A] (verified)

Time = 7.36 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.14

method result size
default \(-\frac {i \sqrt {2+3 \sec \left (f x +e \right )}\, \sqrt {4-5 \sec \left (f x +e \right )}\, \sqrt {-\frac {2 \left (4 \cos \left (f x +e \right )-5\right )}{\cos \left (f x +e \right )+1}}\, \sqrt {10}\, \sqrt {\frac {2 \cos \left (f x +e \right )+3}{\cos \left (f x +e \right )+1}}\, \operatorname {EllipticF}\left (3 i \left (-\cot \left (f x +e \right )+\csc \left (f x +e \right )\right ), \frac {\sqrt {5}}{15}\right ) \left (\cos \left (f x +e \right )^{2}+\cos \left (f x +e \right )\right )}{15 f \left (8 \cos \left (f x +e \right )^{2}+2 \cos \left (f x +e \right )-15\right )}\) \(142\)

[In]

int(sec(f*x+e)/(4-5*sec(f*x+e))^(1/2)/(2+3*sec(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/15*I/f*(2+3*sec(f*x+e))^(1/2)*(4-5*sec(f*x+e))^(1/2)*(-2*(4*cos(f*x+e)-5)/(cos(f*x+e)+1))^(1/2)*10^(1/2)*((
2*cos(f*x+e)+3)/(cos(f*x+e)+1))^(1/2)*EllipticF(3*I*(-cot(f*x+e)+csc(f*x+e)),1/15*5^(1/2))/(8*cos(f*x+e)^2+2*c
os(f*x+e)-15)*(cos(f*x+e)^2+cos(f*x+e))

Fricas [F]

\[ \int \frac {\sec (e+f x)}{\sqrt {4-5 \sec (e+f x)} \sqrt {2+3 \sec (e+f x)}} \, dx=\int { \frac {\sec \left (f x + e\right )}{\sqrt {3 \, \sec \left (f x + e\right ) + 2} \sqrt {-5 \, \sec \left (f x + e\right ) + 4}} \,d x } \]

[In]

integrate(sec(f*x+e)/(4-5*sec(f*x+e))^(1/2)/(2+3*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(-sqrt(3*sec(f*x + e) + 2)*sqrt(-5*sec(f*x + e) + 4)*sec(f*x + e)/(15*sec(f*x + e)^2 - 2*sec(f*x + e)
- 8), x)

Sympy [F]

\[ \int \frac {\sec (e+f x)}{\sqrt {4-5 \sec (e+f x)} \sqrt {2+3 \sec (e+f x)}} \, dx=\int \frac {\sec {\left (e + f x \right )}}{\sqrt {4 - 5 \sec {\left (e + f x \right )}} \sqrt {3 \sec {\left (e + f x \right )} + 2}}\, dx \]

[In]

integrate(sec(f*x+e)/(4-5*sec(f*x+e))**(1/2)/(2+3*sec(f*x+e))**(1/2),x)

[Out]

Integral(sec(e + f*x)/(sqrt(4 - 5*sec(e + f*x))*sqrt(3*sec(e + f*x) + 2)), x)

Maxima [F]

\[ \int \frac {\sec (e+f x)}{\sqrt {4-5 \sec (e+f x)} \sqrt {2+3 \sec (e+f x)}} \, dx=\int { \frac {\sec \left (f x + e\right )}{\sqrt {3 \, \sec \left (f x + e\right ) + 2} \sqrt {-5 \, \sec \left (f x + e\right ) + 4}} \,d x } \]

[In]

integrate(sec(f*x+e)/(4-5*sec(f*x+e))^(1/2)/(2+3*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sec(f*x + e)/(sqrt(3*sec(f*x + e) + 2)*sqrt(-5*sec(f*x + e) + 4)), x)

Giac [F]

\[ \int \frac {\sec (e+f x)}{\sqrt {4-5 \sec (e+f x)} \sqrt {2+3 \sec (e+f x)}} \, dx=\int { \frac {\sec \left (f x + e\right )}{\sqrt {3 \, \sec \left (f x + e\right ) + 2} \sqrt {-5 \, \sec \left (f x + e\right ) + 4}} \,d x } \]

[In]

integrate(sec(f*x+e)/(4-5*sec(f*x+e))^(1/2)/(2+3*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(sec(f*x + e)/(sqrt(3*sec(f*x + e) + 2)*sqrt(-5*sec(f*x + e) + 4)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec (e+f x)}{\sqrt {4-5 \sec (e+f x)} \sqrt {2+3 \sec (e+f x)}} \, dx=\int \frac {1}{\cos \left (e+f\,x\right )\,\sqrt {\frac {3}{\cos \left (e+f\,x\right )}+2}\,\sqrt {4-\frac {5}{\cos \left (e+f\,x\right )}}} \,d x \]

[In]

int(1/(cos(e + f*x)*(3/cos(e + f*x) + 2)^(1/2)*(4 - 5/cos(e + f*x))^(1/2)),x)

[Out]

int(1/(cos(e + f*x)*(3/cos(e + f*x) + 2)^(1/2)*(4 - 5/cos(e + f*x))^(1/2)), x)